Chapter 24

Communicable Diseases

Lesson 1
What Are Communicable Diseases?

Lesson 2
Preventing Communicable Diseases

Lesson 3
Common Communicable Diseases
Using Visuals. To avoid spreading disease, rest, drink plenty of fluids, and stay home when you are ill. What other measures can you take to prevent communicable diseases?

What’s Your Health Status?

Read each statement below and respond by writing yes, no, or sometimes for each item. Write yes only for items that you practice regularly.

1. I keep my immunizations up to date.
2. I avoid close contact with people who have a cold or the flu.
3. I wash my hands after using the bathroom, before handling food, before meals, and after I blow my nose.
4. I follow a nutritious eating plan.
5. I get at least eight to ten hours of sleep each night.
6. I take precautions to avoid bites from insects and ticks.
7. I prepare and store food in a safe manner.
8. I cover my nose and mouth when I cough or sneeze.
9. I don’t use tobacco, alcohol, or other drugs.
10. I get plenty of rest and fluids when I have a cold or the flu.

For instant feedback on your health status, go to Chapter 24 Health Inventory at health.glencoe.com.
Lesson 1

What Are Communicable Diseases?

VOCABULARY
communicable disease
pathogen
infection
viruses
bacteria
toxin
vector

YOU’LL LEARN TO
• Identify the types of pathogens that cause communicable diseases.
• Analyze the relationship between healthful behaviors and the ways that communicable diseases are spread.
• Develop and analyze strategies for preventing communicable diseases.

Write about the last time you had a cold. Include a list of the symptoms you experienced. Explain how you think you caught the cold and what you did to treat it.

Most of us don’t spend much time thinking about microorganisms, but they often impact our lives. Although most microorganisms—living things too small to be seen without a microscope—are harmless, a few, such as the viruses shown on this page, can cause communicable diseases. A communicable disease is a disease that is spread from one living thing to another or through the environment. Knowing how communicable diseases spread can help you choose behaviors to reduce your risk of getting them.

Causes of Communicable Diseases

An organism that causes disease is called a pathogen. Common pathogens include certain viruses, bacteria, fungi, protozoans, and rickettsias (rik-ET-see-uhz). Figure 24.1 lists some of the diseases caused by pathogens. An infection is a condition that occurs when pathogens enter the body, multiply, and damage body cells. If the body is not able to fight off the infection, a disease develops.
Viruses

You’re already familiar with two diseases caused by viruses—the common cold and influenza, or the flu. Viruses are pieces of genetic material surrounded by a protein coat. By themselves they are inactive. They need living cells to reproduce. Viruses invade all known forms of life—mammals, birds, reptiles, insects, plants, and even bacteria.

After a virus penetrates a cell, called the host cell, the virus takes control of the cell to manufacture more viruses. The new viruses burst from the cell, usually killing it, and take over other cells. Like other pathogens, viruses usually run their course and eventually are killed by the immune system. Antibiotics do not work against viruses.

Bacteria

Bacteria are single-celled microorganisms that live almost everywhere on earth. Most bacteria are harmless, and many types are essential for life. For example, bacteria in your digestive system help digest food and make some of the vitamins you need. When bacteria enter the body, they multiply through cell division. Some bacterial pathogens, such as the ones that cause tetanus, produce a toxin, a substance that kills cells or interferes with their functions. Like most other microorganisms that enter the body of a healthy individual, bacteria are usually destroyed by the immune system. Most bacterial diseases can be treated with antibiotics.
Other Types of Pathogens

Other types of organisms also can cause communicable diseases.

- **Fungi** are plantlike organisms, such as molds and yeasts. Some types can cause diseases of the skin, such as athlete's foot; diseases of the mucous membranes; or of the lungs.

- **Protozoans** are single-celled organisms that are larger and more complex than bacteria. Most are harmless, but some can cause disease, especially in people with weakened immune systems.

- **Rickettsias** are pathogens that resemble bacteria. Like viruses, they multiply by invading the cells of another life form. Often these organisms enter humans through the bites of insects such as fleas or lice. Rocky Mountain spotted fever is the most frequently reported illness spread by rickettsias.

How Communicable Diseases Are Transmitted

There are several means of transmission, or the spreading, of pathogens. Transmission can occur through direct or indirect contact or through breathing contaminated air. Some diseases can be transmitted in more than one way. If you know how they are spread you can take precautions and avoid infection.

Direct Contact

Many pathogens are transmitted by direct contact with an infected person or animal or with something in the environment. Direct contact includes touching, biting, kissing, and sexual contact. Sneezing and coughing can spray infectious droplets of saliva or mucus onto a nearby person's eyes, nose, or mouth. A pregnant woman may also transmit an infection to her unborn child through the placenta. A person can get tetanus from a puncture wound by a rusty nail.

Indirect Contact

Some communicable diseases can be transmitted indirectly, without being close to an infected person. The following are ways diseases can be transmitted through indirect contact:

- **Contaminated objects.** Inanimate objects can become contaminated with infectious discharges or secretions. Suppose that a person with a cold sneezes onto a table or into his or her hand and then touches the table. The cold viruses can be transmitted to you if you touch the table and then touch your nose or eyes. Use proper handwashing techniques to avoid transmitting infections.
Vectors. An organism, usually an arthropod, such as a tick, that carries and transmits pathogens to humans or other animals is known as a vector. For example, a mosquito may take in pathogens when it feeds on an infected person. The mosquito then injects some of those pathogens into the next person it bites, thus spreading the disease. Common vectors include flies, mosquitoes, and ticks. Lyme disease and malaria are spread by vectors.

Water and food. Careless handling and storage of food are major sources of contamination and illness. For example, salmonella (sal-muh-NE-luh) bacteria in undercooked poultry can cause food poisoning. Water supplies that become contaminated with human or animal feces can cause illnesses such as hepatitis A.

Airborne Transmission

Pathogens from a sneeze or a cough may float in the air for a long time and travel long distances. Airborne transmission is different from direct contact because the pathogens don't settle quickly on surfaces. You don't have to be close to an infected person to inhale the pathogens. Diseases that are transmitted this way include chicken pox, tuberculosis, and influenza. A person can get inhalation anthrax by inhaling soil containing the bacteria.

Preventing the Spread of Disease

Reducing your risk of communicable diseases isn’t complicated. Practicing healthful behaviors based on good hygiene and common sense will help you avoid infection.

Washing Hands

Handwashing is the single most effective way to prevent the spread of disease. Wash your hands before you prepare food, before you eat, and after you use the bathroom. Clean hands carefully before inserting contact lenses or putting on makeup. After handling animals, especially reptiles, or animal wastes, make it a habit to wash your hands. When someone in your home is ill, keep hands clean to prevent the spread of pathogens.

Handling Food Properly

Foodborne illness occurs in places where food is handled improperly. Always wash your hands before you handle food. Use paper towels, not dishcloths or sponges, to keep surfaces and equipment clean. Separate raw meat from other foods. Cook food to its proper temperature. Chill cold and leftover foods quickly to the proper temperature.

Strategies for Avoiding Diseases Transmitted by Vectors

- Wear long-sleeved shirts, long pants, socks, and hats.
- Tuck shirts in at the waist, and tuck pants into socks.
- Wear boots, not sandals.
- Apply repellents to clothing, boots, socks, and all exposed skin.
- Check yourself and your clothing frequently. Wearing light-colored clothing can help you spot ticks and mosquitoes.

Foodborne illness For more information about foodborne illness and proper food preparation, see Chapter 5, page 134.
Other Prevention Measures

Here are some other strategies that will help you reduce your risk of getting or spreading communicable diseases.

- Eat a balanced diet. Participate in regular physical activity. Avoid the use of tobacco, alcohol, and other drugs.
- Avoid sharing eating utensils, makeup, combs and brushes, and other personal items.
- Prepare and store food safely—keep hot foods hot and cold foods refrigerated or on ice.
- Avoid unnecessary contact with people who are ill.
- Take care of yourself when you’re ill. Cover your mouth when you cough or sneeze. Wash your hands after using a tissue.
- Be sure you are vaccinated against particular diseases as recommended by your physician.
- Practice abstinence from sexual activity.
- Learn to manage stress. Stress makes you vulnerable to illness if you do not find ways to manage it effectively.
Lesson 2

Preventing Communicable Diseases

VOCABULARY
immune system
inflammatory response
phagocyte
antigen
immunity
lymphocyte
antibody
vaccine

YOU’LL LEARN TO
• Examine how the body protects itself against invading pathogens.
• Apply strategies for caring for your immune system and preventing disease.
• Explain how technology has impacted the health status of individuals, families, communities, and the world in the prevention of communicable disease.
• Identify community health services that provide vaccines and information on disease prevention.

Have you ever had a small cut or other injury that became red or painful or developed pus? Write a few paragraphs describing what the area of injury looked like over several days.

You can’t see it, but the teen in the picture is waging a battle. The battle is not against other players who are trying to score a point. It’s a battle to fight off the pathogens that constantly attack his body. Every day, 24 hours a day, your body is exposed to millions of pathogens. Most of the time, your body manages to stay free of infection because of your immune system. The immune system is a network of cells, tissues, organs, and chemicals that fights off pathogens.

Physical and Chemical Barriers

Physical and chemical barriers make up your body’s first line of defense, as shown in Figure 24.2 on page 628. They protect

Quick Start

Compare the protective equipment worn by this goalie to your physical and chemical barriers. How might behaviors such as wearing appropriate safety equipment help protect you from pathogens?
against a wide variety of invaders. Physical barriers, such as skin and mucous membranes, block pathogens from invading your body. Chemical barriers, such as enzymes in tears, destroy pathogens.

The Immune System

The immune system has two major defense strategies. The inflammatory response is general, or nonspecific; it works against all types of pathogens. Specific defenses work against particular pathogens. Together, these defenses work to prevent disease.

The Inflammatory Response

The inflammatory response is a reaction to tissue damage caused by injury or infection. Its purpose is to prevent further tissue injury and to halt invading pathogens. Suppose that a splinter enters your finger. Your body immediately reacts to the damage caused by the splinter and to any pathogens on the splinter. If you’ve ever had the area around an injury become hot, swollen, red, and painful, you’ve experienced the inflammatory response.
In response to invasion by microorganisms or to tissue damage, blood vessels near the site of an injury expand to allow more blood flow to the area. As blood vessels expand, fluid and cells from the bloodstream leak into the area. The collection of fluid and white blood cells causes swelling and pain because of pressure on nerve endings. One type of cell that responds to injury is called a **phagocyte** (FA-guh-site), a white blood cell that attacks invading **pathogens**. Phagocytes engulf pathogens and then destroy them with chemicals. Pus, a collection of dead white blood cells and damaged tissue, may collect at the site of inflammation as a response to bacteria. After the pathogens are killed and tissue damage is under control, tissue repair can begin. However, regardless of whether pathogens survive the inflammatory response, specific defenses are activated. This activation is an effort to prevent this same infection from occurring again.

Health Skills Activity

Decision Making: Caring for Your Immune System

Aaron has been getting a lot of colds lately. Today he woke up with a bad sore throat. Aaron knows that he should stay home and rest, both for his own health and to avoid infecting others at school. However, Aaron plays the lead saxophone in the marching band, and today is the last band practice before the big game. This practice will even be a full-dress rehearsal to make sure everything goes right for the half-time show.

Saturday’s game will be the playoff, and everyone is sure the school will win. If Aaron doesn't show up, he thinks he will be letting the band down. Besides, he doesn't want to admit that he is getting sick because then he won’t be there on Saturday when the team wins.

Aaron wonders what he should do.

What Would You Do?

Apply the six steps of the decision-making model to Aaron’s situation.

1. State the situation.
2. List the options.
3. Weigh the possible outcomes.
4. Consider values.
5. Make a decision and act.
6. Evaluate the decision.
Specific Defenses

Specific defenses react to invasion as a result of the body's ability to recognize certain pathogens and destroy them. The process by which this happens, the immune response, is described in Figure 24.3. During the immune response, certain types of white blood cells react to antigens. An antigen is a substance that is capable of triggering an immune response. Antigens are found on the surfaces of pathogens and in toxins. Macrophages are a type of phagocyte that destroys pathogens by making antigens recognizable to white blood cells. The result of the immune response is immunity, the state of being protected against a particular disease.

Lymphocytes

A lymphocyte (LIMP-fuh-site) is a specialized white blood cell that coordinates and performs many of the functions of specific immunity. There are two types of lymphocytes: T cells and B cells.

T CELLS AND B CELLS

There are different types of T cells with different functions. They all work together to protect against infection.

- Helper T cells trigger the production of B cells and killer T cells.
- Killer T cells attack and destroy infected body cells. Killer T cells don't attack the pathogens themselves, only the infected cells.
Suppressor T cells coordinate the activities of other T cells. They “turn off” or suppress helper T cells when the infection has been cleared.

In conjunction with the work of T cells, lymphocytes called B cells produce antibodies. An antibody is a protein that acts against a specific antigen. Each B cell is programmed to make one type of antibody, specific to a particular pathogen. Some antibodies attach to foreign antigens to mark them for destruction. Some destroy invading pathogens. Others block viruses from entering body cells.

The Role of Memory Lymphocytes

Your immune system actually has a “memory.” Some T cells and B cells that have been activated by antigens become memory cells. These memory cells circulate in your bloodstream and through the lymphatic system, shown in Figure 24.4 on page 632. When memory cells recognize a former invader, the immune system uses antibodies and killer T cells in a quick defense to stop it. For example, if you have had measles or an immunization against measles, your immune system remembers the antigens for the measles virus. If it enters your body again, antibodies will attack the virus immediately, protecting you from becoming ill.

Active Immunity

The immunity your body develops to protect you from measles or other diseases is called active immunity. Naturally acquired active immunity develops when your body is exposed to antigens from invading pathogens. Artificially acquired active immunity develops in response to a vaccine, a preparation of dead or weakened pathogens that are introduced into the body to stimulate an immune response. In this way vaccines cause your body to produce antibodies without actually causing the disease. Today, more than 20 serious human diseases can be prevented by vaccination. Active immunity to many diseases can last a lifetime, but some immunizations need to be repeated to maintain immunity.

Passive Immunity

In active immunity your body produces its own antibodies. You also can be protected from pathogens by passive immunity—receiving antibodies from another person or an animal. This immunity is short-lived; it usually lasts only weeks to months. Natural passive immunity occurs when antibodies pass from mother to child during pregnancy or while nursing. Artificial passive immunity results from the injection of antibodies produced by an animal or a human who is immune to the disease.
Care of the Immune System

Your health behaviors can greatly reduce your chance of contracting a disease or getting an infection. When you keep your body strong and healthy, your immune system is better able to fight off pathogens. Taking positive steps in every area of your health will give you the boost needed to reduce your chance of illness.

- Follow a sensible eating plan to maintain your overall health and keep your immune system strong. Include whole grains and nutrient-dense foods such as fruits and vegetables, and reduce intake of fats, sugar, and salt. Drink six to eight 8-ounce glasses of water each day.

- Get plenty of rest. Fatigue reduces the effectiveness of the immune system. To function at their best, teens should average nine hours of restful sleep each night.
Get about an hour of physical activity each day. This is especially important to relieve stress.

Avoid sharing personal items such as towels, toothbrushes, hairbrushes, or makeup.

Avoid tobacco, alcohol, and other drugs.

Avoid sexual contact. Some STDs, such as HIV, actually destroy the immune system.

Keep your immunizations up to date.

Vaccines to Aid the Body’s Defenses

When a new disease emerges or a familiar one becomes a greater health threat than in the past, health care workers begin to look for ways to prevent the disease. Research and advances in medical technology have allowed scientists to develop vaccines. Today, vaccines prevent diseases that once claimed millions of lives. Vaccines can be one of four types.

- **Live-virus vaccines** are made from pathogens grown under special laboratory conditions to make them lose most of their disease-causing properties. Although weakened, the organism can still stimulate the production of antibodies. The vaccines for measles, mumps, and rubella (MMR) and for chicken pox are produced in this way.

- **Killed-virus vaccines** use inactivated pathogens. Even though they are dead, the organism still stimulates an immune response and antibodies are produced. Flu shots, the Salk vaccine for polio, and the vaccines for hepatitis A, rabies, cholera, and plague are all killed-virus vaccines.

- **Toxoids** are inactivated toxins from pathogens. They are used to stimulate the production of antibodies. Though many pathogens are not harmful themselves, the toxins they produce cause sickness. Toxoids can be used to protect the body against such illnesses. Both tetanus and diphtheria immunizations use toxoids.

- **New and second-generation vaccines** are being developed by scientists using new technologies. An example is the vaccine for hepatitis B, which is made by genetically altered yeast cells.

STDs For more information on sexually transmitted diseases, including HIV/AIDS, see Chapter 25, page 646.
Immunization for All

Vaccines benefit more people than just those who receive them. If you are vaccinated against a particular disease, you can’t spread that disease to others. In this way vaccination not only protects you but also helps protect those around you, especially your family and friends. One exception is tetanus, which is transmitted through the environment, not from person to person. The tetanus vaccine protects only the individual who receives it.

You should have up-to-date immunizations, including those for tetanus, diphtheria, measles, mumps, rubella, and hepatitis B. Vaccination against chicken pox is recommended if you have not had this disease. Some vaccines require more than one dose over time, or “booster shots.” Your family physician or your local health department can advise you on the immunizations you need and provide them for you. Most high schools and colleges require that students show proof of current immunizations before admission. Each state has its own laws governing immunizations and school attendance. Some schools may have additional requirements.

Reviewing Facts and Vocabulary
1. List three physical and chemical barriers that pathogens encounter when they try to enter the human body.
2. What is the difference between active immunity and passive immunity?
3. Where can you go to find out which immunizations you need?

Thinking Critically
4. Analyzing. How do you think the development of vaccines for more than 20 communicable diseases has affected the average human life span in areas where these vaccines are available?
5. Evaluating. What would you say to someone who says that he or she is careful never to come into contact with pathogens and therefore will not become ill?

Applying Health Skills

Accessing Information. Research those vaccinations suggested for someone your age, and make a table of this information. Work with a parent or guardian to determine which of your immunizations are current, and fill in the information on the table. Plan to get any immunizations you lack. Use this table to track when you should update your immunizations.

Spreadsheets. Use spreadsheet software to create a chart showing the immunizations suggested for different age groups. You might also include a column listing facilities in the area that offer these vaccinations. See health.glencoe.com for information on how to create a spreadsheet.
Lesson 3

Common Communicable Diseases

VOCABULARY
pneumonia
jaundice
emerging
infection

YOU’LL LEARN TO
• Identify the causes, transmission, symptoms, and treatment of several communicable diseases.
• Analyze strategies to reduce the risk of contracting some communicable diseases.
• Explain how technology impacts world health status.

Quick Start

Make a two-column chart. In the first column, list communicable diseases with which you are familiar and write one fact about each. In the second column, list communicable diseases you have heard of but know little about.

You probably have experienced a fever or the stuffy or runny nose of a cold. In this lesson you’ll learn about some common communicable diseases, their symptoms, and how they are treated. Most important, you will learn ways to reduce your risk of contracting these diseases.

Respiratory Infections

The most common communicable diseases are those of the respiratory tract. These infections can occur anywhere from the nose to the alveoli of the lungs. Most are caused by viruses or bacteria. You can reduce your risk of most respiratory illnesses by avoiding close contact with people who are infected, washing your hands often, keeping your hands away from your eyes and nose, and keeping your immune system healthy. Smoking can contribute to illness by damaging cilia and irritating respiratory passages. In addition, symptoms of these diseases may be more severe in smokers. Smoking has also been shown to suppress the immune system.

When you have a cold, the best thing to do is rest, eat nutritious foods, and drink plenty of fluids such as water or fruit juice. How might these strategies help your body fight cold viruses?
Common Cold

The common cold is a viral infection that causes inflammation of the mucous membranes that line the nose and throat. Symptoms include a runny nose, sneezing, and sore throat. The most common way of getting a cold is from rubbing your eyes or nose after picking up the virus directly through hand-to-hand contact or indirectly by handling a contaminated object.

There is no cure for the common cold. Treatment is for relief of symptoms, and most colds clear up in a week or so. Often treatment includes the use of analgesics. It’s important to note that anyone under 20 years of age should avoid use of medications containing salicylates, such as aspirin. Such use is linked to Reye’s syndrome, a condition that can be fatal. Avoid these products no matter what disease you might have. Use acetaminophen or ibuprofen instead.

Influenza

Influenza, or the flu, is a viral infection of the respiratory tract. It is most often spread through airborne transmission but also may spread through direct or indirect contact. Symptoms of flu include high fever, fatigue, headache, muscle aches, and cough. The flu can lead to pneumonia, (noo-MOH-nyah) an infection of the lungs in which the air sacs fill with pus and other liquid. This is a serious disease that is more likely to occur in the elderly and people with lung and heart problems.

Antiviral drugs for treatment of the flu are available but need to be given as soon as the illness arises. Persons who have the flu should get proper nutrition and plenty of rest and fluids. Older adults and persons of any age with chronic health problems should get a flu shot every year. However, anyone who wants to avoid the flu can be given the vaccine.

Pneumonia

Along with influenza, pneumonia is one of the top ten causes of death in the United States. Viral pneumonia is relatively short-lived and produces symptoms similar to those of influenza. Antiviral drugs are used in some cases. Bacterial pneumonia can be treated with antibiotics if diagnosed early. The bacteria that cause pneumonia are often present in healthy throats. When body defenses are weakened in some way, the bacteria can get into the lungs and multiply. For example, if a person is elderly or has influenza, he or she may be more at risk for complications leading to pneumonia.
Strep Throat

Strep throat is a bacterial infection spread by direct contact, often through droplets that are coughed or sneezed into the air. Symptoms of strep throat include a sore throat, fever, and enlarged lymph nodes in the neck. Untreated, strep throat can lead to serious complications, including inflammation of the kidneys and rheumatic fever, which can cause permanent heart damage. Strep throat can be treated with antibiotics. A doctor cannot always diagnose strep by examination. If a sore throat lasts more than three days, a culture is taken to identify the bacteria.

Tuberculosis

Tuberculosis, or TB, is a bacterial disease that usually attacks the lungs. TB is spread through the air when a person with the disease coughs or sneezes. Most people who are infected carry the bacteria in their lungs but never develop the disease because the body's defenses prevent the bacteria from multiplying and spreading to others. People with weakened immune systems are more likely to develop the active disease with symptoms that include fatigue, coughing (sometimes coughing up blood), fever, night sweats, and weight loss. People with the active disease can spread TB. Prolonged or repeated exposure is usually required for infection. Some strains have developed resistance to antibiotics. Physicians may have to prescribe several antibiotics at one time until tests are conducted to determine which are effective for a particular person.

Hepatitis

Hepatitis is inflammation of the liver and can be caused by chemicals, including drugs or alcohol, or by many different pathogens. The hepatitis A, B, and C viruses are some of the most common causes of this type of liver damage, and there is no cure for them. However, vaccines for hepatitis A and B are available.

Hepatitis A

Hepatitis A is another of the top ten communicable diseases reported in the United States. About 1.5 million people worldwide are newly infected each year. The hepatitis A virus is most commonly spread through contact with feces of an infected person. Infected persons who do not wash their hands properly may contaminate inanimate objects or food or spread the virus through direct contact.
Symptoms of hepatitis A are generally mild and may include fever, nausea, vomiting, fatigue, abdominal pain, and jaundice, a yellowing of the skin and eyes. Most infected individuals recover completely. Chronic, or long-lasting, infection is rare. The best way to reduce your risk of hepatitis A is to practice careful handwashing and avoid close contact with people who are infected.

Hepatitis B

Hepatitis B is a more serious disease than hepatitis A. The hepatitis B virus (HBV) is found in most bodily fluids of an infected person, especially blood. It is most often transmitted through sexual contact. It also can be transmitted through needles shared by infected drug users. Though most people who are infected never experience symptoms, the hepatitis B virus frequently causes severe liver damage, including liver failure and cirrhosis, or scarring, of the liver. Hepatitis B may be responsible for up to 80 percent of all cases of liver cancer worldwide. More than two billion people worldwide have been infected with HBV. About 1.25 million people in the United States have chronic HBV infection.

You can reduce your risk of hepatitis B by practicing abstinence from sexual contact and from illegal drug use. Do not share personal items, such as toothbrushes or razors, which could have trace amounts of saliva or blood. Body piercing and tattooing using contaminated needles can spread the disease. The CDC recommends that all children and teens receive the hepatitis B vaccine.

Hepatitis C

Hepatitis C is the most common chronic blood-borne infection in the United States; about four million Americans are infected. It is most often transmitted by direct contact with infected blood through contaminated needles shared by drug users. Hepatitis C can lead to chronic liver disease, liver cancer, or liver failure. It is the leading reason for liver transplants in the United States. Up to 90 percent of those infected with the hepatitis C virus (HCV) don't realize they have the disease until years later when routine tests show liver damage. You can reduce your risk of hepatitis C by practicing abstinence from illegal drug use. In addition, don’t share personal care items, such as razors and toothbrushes. As with other viral infections, there is no cure for hepatitis. Treatment includes rest, proper nutrition, and drinking plenty of fluids.
Other Diseases

Several other communicable diseases are common among adolescents and young adults. Figure 24.5 on page 640 provides a summary of these diseases.

Emerging Infections

Some diseases have been effectively controlled with the help of modern technology such as antibiotics and vaccines. Yet new diseases, such as AIDS and Lyme disease, are constantly appearing. Others, such as malaria and tuberculosis, are occurring in forms

Reducing Your Risk of Lyme Disease

In 1982 fewer than 1,000 cases of Lyme disease were reported in the United States. Today, more than 16,000 cases are reported each year. Lyme disease is transmitted to humans by the bite of an infected deer tick. Ticks favor a moist, shaded environment, such as forests. Coastal ticks thrive in areas of high rainfall. Ticks are most active in the spring and summer. Study the graph to help you analyze the environmental and geographical factors that influence the distribution and rate of disease in the United States. Use this information to develop a plan to reduce your risk.

![Map of the United States with high, moderate, low, and minimal or no risk zones for Lyme disease.]

What does the concentration of cases here tell you about the environment in which ticks live?

What is different about this part of the country that could account for the lower incidence of Lyme disease?

What human activities (leisure and industrial) could have influenced the increase in cases from 1982 to the present?

ACTIVITY

Work with a small group of students. Together, analyze the graph and discuss the questions. Use what you’ve learned to develop an action plan to decrease your risk of contracting Lyme disease. Include specific steps to protect yourself. Consider clothing, insect repellents, where you live or travel, and the time of year.
that are resistant to drug treatments. These diseases are known as “emerging.” An emerging infection is a communicable disease whose incidence in humans has increased within the past two decades or threatens to increase in the near future. Many factors are contributing to the development of emerging infections:

- **Transport across borders.** Infected people and animals carry pathogens from region to region, often to places where those pathogens previously were not a problem. Two examples of this are the appearance of dengue fever and West Nile encephalitis which is caused by West Nile virus. Dengue fever is found mostly in South and Central America and parts of Asia, and has appeared in the southwestern United States. West Nile encephalitis appears in Asia, Africa, and Europe and is now expanding across the Western Hemisphere, including parts of the United States. Both diseases are carried by mosquitoes.

- **Population movement.** A factor in the increase in Lyme disease is the movement of people into heavily wooded areas where ticks are prevalent. Symptoms include a rash, fatigue, fever, headache, stiff neck, sore muscles, and joint pain. Lyme disease can be treated with antibiotics.

Reviewing Facts and Vocabulary
1. Compare and contrast the common cold and the flu.
2. What are three ways you can reduce your risk of getting influenza?
3. What are emerging infections?

Thinking Critically
4. Synthesizing. What healthful behaviors can students in your class practice to reduce everyone’s risk of respiratory infection?
5. Analyzing. Why might emerging infections be an important area to receive funding for research? How can technology impact the reduction of diseases worldwide?

Applying Health Skills
Advocacy. Choose one emerging infection to research. Prepare a script for a public service announcement describing this disease. Be sure to include information on how the disease is transmitted and what the symptoms are. Urge individuals who suspect they may be infected to seek medical attention immediately. Share your script with the class.

Presentation Software
Use presentation software to present the information you found on the disease you chose to investigate. Find help in using presentation software at health.glencoe.com.
Government agencies such as the Centers for Disease Control and Prevention (CDC) are responsible for getting important health information to the public. A particular challenge for these agencies is alerting the public to information about emerging infections, such as dengue fever, West Nile virus, and anthrax. These agencies use press releases as part of a media campaign to pass this information to as many people as possible.

Research one of the emerging diseases that recently have been identified in the United States. Pretend you are on a communications team at the CDC whose job it is to let as many people as possible know about that disease. Begin with a press release, following the example shown above. Design a media campaign to notify the public about the health risks of the disease, what causes the disease, how it is transmitted, and how the disease is treated or prevented.

Write to your local health department, and ask about its role in responding to the emerging disease you’ve researched. Find out whether there is a community program that provides information about the disease and whether there is something you and your classmates can do to help spread the word.
Write a Report. Plague is a communicable disease that had a significant impact on world history, especially European history during the fourteenth century. Using reliable resources, research this disease and its impact during this period of history. Include the plague’s causes, symptoms, and effects on society. Be sure to explain how the disease changed people’s attitudes and became part of Renaissance folklore.

Calculate Bacteria Growth. Bacteria can grow rapidly under the right conditions. Some can duplicate themselves every 20 minutes. Calculate how many bacteria would be produced in four hours if a single bacterium reproduced at this rate.

Create a Visual Display. Choose a vector-borne disease and find out about the life cycle of the pathogen that causes it. Create a display that illustrates the life cycle. Include information about how it is transmitted from host to host. Post the display in your classroom.

Tell a Story. Develop a story that is suitable for retelling aloud and is based on your own experience with one of the common childhood diseases mentioned in this chapter (flu, strep throat, chicken pox, measles, or the common cold). Use the story as a means of teaching your audience about how they can help prevent the spread of such diseases.

Tell a Story. Develop a story that is suitable for retelling aloud and is based on your own experience with one of the common childhood diseases mentioned in this chapter (flu, strep throat, chicken pox, measles, or the common cold). Use the story as a means of teaching your audience about how they can help prevent the spread of such diseases.

CROSS-CURRICULUM CONNECTIONS

Tell a Story. Develop a story that is suitable for retelling aloud and is based on your own experience with one of the common childhood diseases mentioned in this chapter (flu, strep throat, chicken pox, measles, or the common cold). Use the story as a means of teaching your audience about how they can help prevent the spread of such diseases.

Calculate Bacteria Growth. Bacteria can grow rapidly under the right conditions. Some can duplicate themselves every 20 minutes. Calculate how many bacteria would be produced in four hours if a single bacterium reproduced at this rate.

Create a Visual Display. Choose a vector-borne disease and find out about the life cycle of the pathogen that causes it. Create a display that illustrates the life cycle. Include information about how it is transmitted from host to host. Post the display in your classroom.

Tell a Story. Develop a story that is suitable for retelling aloud and is based on your own experience with one of the common childhood diseases mentioned in this chapter (flu, strep throat, chicken pox, measles, or the common cold). Use the story as a means of teaching your audience about how they can help prevent the spread of such diseases.

Calculate Bacteria Growth. Bacteria can grow rapidly under the right conditions. Some can duplicate themselves every 20 minutes. Calculate how many bacteria would be produced in four hours if a single bacterium reproduced at this rate.

Create a Visual Display. Choose a vector-borne disease and find out about the life cycle of the pathogen that causes it. Create a display that illustrates the life cycle. Include information about how it is transmitted from host to host. Post the display in your classroom.

CROSS-CURRICULUM CONNECTIONS

Tell a Story. Develop a story that is suitable for retelling aloud and is based on your own experience with one of the common childhood diseases mentioned in this chapter (flu, strep throat, chicken pox, measles, or the common cold). Use the story as a means of teaching your audience about how they can help prevent the spread of such diseases.

Calculate Bacteria Growth. Bacteria can grow rapidly under the right conditions. Some can duplicate themselves every 20 minutes. Calculate how many bacteria would be produced in four hours if a single bacterium reproduced at this rate.

Create a Visual Display. Choose a vector-borne disease and find out about the life cycle of the pathogen that causes it. Create a display that illustrates the life cycle. Include information about how it is transmitted from host to host. Post the display in your classroom.

Epidemiologist

Did you ever wonder why and how diseases move the way they do? Why is the incidence of a particular disease suddenly on the increase? If these questions interest you, consider a career as an epidemiologist.

Epidemiology is a branch of medical science that deals with the incidence, distribution, and control of disease. Epidemiologists complete at least six years of college, studying science, human behavior, and biostatistics. They usually work in a university, research facility, or public health department. People who want to become epidemiologists should be logical, patient, organized, and curious. Find out more about epidemiology and other health careers by clicking on Career Corner at health.glencoe.com.
Chapter 24 Review

EXPLORING HEALTH TERMS Answer the following questions on a sheet of paper.

Lesson 1 Match each definition with the correct term.

- communicable disease
- toxin
- viruses
- bacteria
- pathogen
- vector

1. A microscopic organism that causes disease.
2. A substance that kills cells or interferes with their function.
3. An organism that carries and transmits pathogens to humans or other animals.

Lesson 2 Fill in the blanks with the correct term.

- antibody
- antigen
- immune system
- immunity
- inflammatory response
- lymphocyte
- phagocyte
- vaccine

4. The swelling and pain that accompanies an injury such as a splinter is part of the body’s _________.
5. A white blood cell that attacks an invading pathogens is a(n) _________.
6. The state of being protected against a particular disease is _________.

Lesson 3 Identify each sentence as True or False. If false, replace the underlined term with the correct term.

- emerging infection
- jaundice
- pneumonia

7. Jaundice can be a complication of the flu.
8. A person with pneumonia will have skin and eyes that are slightly yellow.
9. An emerging infection is an infectious disease that has become more common within the past two decades or that threatens to increase in the near future.

RECALLING THE FACTS Use complete sentences to answer the following questions.

Lesson 1

1. What is one way that some bacteria are helpful to the human body? How do some bacteria harm the body?
2. How do pathogens spread when a person sneezes?
3. Analyze how handwashing can help prevent communicable diseases from spreading.

Lesson 2

4. How do mucous membranes help fight pathogens?
5. How are antibodies and antigens related?
6. Describe how vaccines work, and evaluate their impact on disease prevention.
7. Explain how technology, such as the development of vaccines, has impacted the health status of individuals, families, communities, and the world in the prevention of communicable disease.

Lesson 3

8. With what do the air sacs in the lungs fill in a person infected with pneumonia?
9. What healthful behaviors will reduce your risk of contracting hepatitis A, B, and C?
10. Identify three emerging infections.
THINKING CRITICALLY

1. **Applying.** Imagine that you are a pathogen living in the lungs of an infected person. Write a story about your journey as you leave your host through a sneeze. Tell what happens to you and your fellow pathogens as you travel through the air and land on another individual. *(LESSON 1)*

2. **Analyzing.** Compare and contrast the function of phagocytes in the inflammatory response with the function of specific lymphocytes in the immune response. *(LESSON 2)*

3. **Synthesizing.** Suppose that several people in a community have a disease that is spreading rapidly. If you were a public health worker assigned the task of finding out how the disease is being transmitted, what might you do to find the cause? *(LESSON 3)*

HEALTH SKILLS APPLICATION

1. **Goal Setting.** Identify three things you can do to lower your risk of contracting a communicable disease. Make a plan to incorporate these strategies into your daily life. Prepare a “Staying Healthy” checklist that gives strategies you can use to reduce the number of infections. *(LESSON 1)*

2. **Advocacy.** Check with state and local governments to find out what immunizations are required for admission to schools at various levels from preschool through college. Use this information to create a public service pamphlet that explains why immunizations are important. *(LESSON 2)*

3. **Accessing Information.** Visit health.glencoe.com to link to a site on communicable diseases. Choose one of the diseases to research, and create a poster on your chosen disease. Be sure to include information about what symptoms accompany the disease, how it is transmitted, what lasting effects it can have on the body, what the trends are, who is most at risk, and whether a cure or an effective treatment is available. If a vaccination is under development for this disease, include information on that as well. You should also include a section with tips on protecting yourself against this disease. *(LESSON 3)*

Parent Involvement

Advocacy. Many diseases and emerging infections are spread by vectors. Contact a state or local health department to determine which vector-borne diseases occur most often in the state in which you live. Choose one of these diseases, and interview a local public health official about precautions that can be taken to avoid infection. Be sure to ask what treatments are available to an infected person. Prepare a fact sheet with this information, including a picture of the vector.

School and Community

Vaccine clinics. Gather information about clinics and other public sites where free or low-cost flu vaccines are offered. Prepare a flyer that explains the need for this immunization. Include the dates, times, and locations for these vaccination opportunities.