Chapter 19

Prenatal Development and Birth

Lesson 1
The Beginning of the Life Cycle

Lesson 2
Prenatal Care

Lesson 3
Heredity and Genetics

Lesson 4
Infancy and Childhood
Using Visuals. Both parents have the responsibility to provide for the health of their unborn child. What steps can parents-to-be take to maximize the chances of having a healthy baby?

- The egg from the mother determines a baby's gender.
- Twins result when more than one sperm fertilizes a single egg.
- A fetus usually remains in the uterus for about nine months.
- If a pregnant female uses tobacco, alcohol, or other drugs, these substances can harm the fetus.
- A female should gain as much weight as possible during pregnancy.
- Both prescription and over-the-counter drugs can harm a fetus.
- A pregnant female should never exercise.
- Genes carry the hereditary traits of an individual.
- Balanced nutrition is especially important during pregnancy because the nutrients a female ingests affect her baby's development.
- A female who wants children does not need to take special care of herself until she knows for sure that she is pregnant.

For instant feedback on your health status, go to Chapter 19 Health Inventory at health.glencoe.com.
Did you know that your body is made of trillions of cells? These cells form the tissues and organs in your body. Yet your heart, lungs, skin, bones, and other body organs all begin as a single cell that is smaller than the period at the end of this sentence.

Conception and Implantation

The entire complex human body begins as one microscopic cell that is formed by the union of an egg cell, or ovum, from a female and a sperm cell from a male. The union of a male sperm cell and a female egg cell is called fertilization, which is also known as conception. The resulting cell is called a zygote (ZY-goht).

Look at Figure 19.1 on page 487. Notice that within a day after the zygote forms, it begins dividing as it travels down the fallopian tube. By the time it reaches the uterus, the zygote has divided many times to form a cluster of cells with a hollow space in the center. Within a few days, the zygote attaches to the uterine wall in the process called implantation. After this, the cluster of cells is known as an embryo (EM-bree-oh), the developing child from the time of implantation until about the eighth week of development. The developing embryo in the uterus is called a fetus (FEE-tuhs).
Embryonic Growth

As the embryo grows, its cells continue to divide, forming three tissue layers that later become various body systems. One layer becomes the respiratory and digestive systems. A second layer develops into muscles, bones, blood vessels, and skin. A third layer forms the nervous system, sense organs, and mouth.

During this time two important structures form outside the embryo:

- The amniotic (am-nee-AH-tik) sac is a thin, fluid-filled membrane that surrounds and protects the developing embryo. It also insulates the embryo from temperature changes.

- The umbilical (uhm-BIL-uh-kuhl) cord is a ropelike structure that connects the embryo and the mother's placenta. The placenta (pluh-SEN-tuh) is a thick, blood-rich tissue that lines the walls of the uterus during pregnancy and nourishes the embryo.

Although the blood supply of the mother and the developing embryo are kept separate, materials diffuse from one blood supply to the other through the umbilical cord. Nutrients and oxygen pass from the mother's blood to the embryo, and wastes from the embryo diffuse into the mother's blood. The wastes are excreted from the mother's body along with her body wastes.

Substances that are harmful to the developing embryo can pass through the umbilical cord, too. If a pregnant female uses harmful substances, such as tobacco, alcohol, or other drugs, they can cross the placenta and harm the developing embryo.

How do twins form?

Identical twins result when a single egg that has been fertilized by a single sperm divides and forms two embryos. Because they develop from the same zygote, identical twins have the same genetic information, are the same gender, and look almost exactly the same.

Fraternal twins form when a female's ovaries release two eggs. Separate sperm fertilize each egg, and two embryos develop. Each twin has a different genetic makeup, and may or may not be the same gender. Fraternal twins do not resemble each other any more than other brothers and sisters do. Fraternal twins are much more common than identical twins.
Fetal Development

The time from conception to birth is usually about nine full months. These nine months are divided into three 3-month periods called trimesters. Read about the changes that take place during each trimester in Figure 19.2. Compare the images to see the growth of the fetus in each trimester.

STAGES OF EMBRYONIC AND FETAL DEVELOPMENT

<table>
<thead>
<tr>
<th>First Trimester (0 to 14 weeks)</th>
<th>Major Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–4 weeks</td>
<td>A zygote may float freely in the uterus for 48 hours before implanting. The spinal cord grows faster than the rest of the body. The brain, ears, and arms begin to form. The heart forms and begins to beat.</td>
</tr>
<tr>
<td>5–8 weeks</td>
<td>The fetus is about 1 inch long at 8 weeks. The mouth, nostrils, eyelids, hands, fingers, feet, and toes begin to form. The nervous system can respond to stimuli. The cardiovascular system is fully functional.</td>
</tr>
<tr>
<td>9–14 weeks</td>
<td>The fetus develops a human profile. Sex organs, eyelids, fingernails, and toenails develop. By week 12 the fetus makes crying motions but no sound and may suck its thumb.</td>
</tr>
</tbody>
</table>
During the period of growth in the uterus, the fetus develops in preparation for living outside the mother's body. Organs develop and become ready to function on their own. The fetus grows and gains weight. After about the seventh month, fat deposits are added under the skin to help the baby maintain body heat after birth. The fetus stores nutrients and builds immunity and protection from diseases and infections.

Second Trimester Major Changes

(15 to 28 weeks)

15–20 weeks

The fetus can blink its eyes. The body begins to grow, growth of the head slows, and the limbs reach full proportion. Eyebrows and eyelashes develop. The fetus can grasp and kick and becomes more active.

21–28 weeks

The fetus can hear conversations and has a regular cycle of waking and sleeping. Weight increases rapidly. The fetus is about 12 inches long and weighs a little more than 1 pound. Fetus may survive if born after 24 weeks but will require special medical care.

Third Trimester Major Changes

(29 weeks to birth)

29–40 weeks

The fetus uses all five senses and begins to pass water from the bladder. Brain scans have shown that some fetuses dream during their periods of sleep in the eighth and ninth months of development. Approximately 266 days after conception, the baby weighs 6 to 9 pounds and is ready to be born.
Stages of Birth

In the final weeks of pregnancy, the fetus becomes more and more crowded in the uterus and puts increased demands on its mother’s body. Most often the baby’s head moves to the lower part of the uterus. Many females experience weak, irregular muscular contractions of the uterus for weeks or even months before the baby is born. As the time approaches for the baby to be born, however, these contractions become regular, stronger, and closer together. The stronger contractions induce labor, the final stage of pregnancy in which the uterus contracts and pushes the baby out of the mother’s body. The stages of labor are summarized in Figure 19.3.

Fetal Ultrasound Technology

Ultrasound is a nonintrusive technology used to monitor a fetus in the uterus using the reflection of sound waves. A moving image of the developing fetus can be viewed on a monitor. Doctors can measure how the fetus is growing and whether organs such as the heart are developing properly. Ultrasound is used to determine the position of the fetus before birth.

Immediately after birth a newborn is given an Apgar score. The Apgar test is used to assess an infant’s physical condition at birth. The score measures appearance, heart rate, reflex irritability, activity, and respiration.

Access print or online sources to investigate at least two other technologies used in fetal monitoring. Tell when and why each is used, cite your sources of information, and provide the criteria you used to evaluate your sources of valid health information. Write a paragraph explaining how fetal ultrasound technology helps protect the health of the mother and unborn child.
Reviewing Facts and Vocabulary

1. Define **fertilization** and **implantation**.
2. Explain the relationship between a zygote, an embryo, and a fetus.
3. How is a developing fetus nourished?

Thinking Critically

4. **Synthesizing.** Considering what you learned about the female reproductive system in Chapter 18, explain what would happen if the zygote did not implant in the uterus after leaving the fallopian tube.
5. **Applying.** Explain how harmful substances taken in by a pregnant female can be transferred to a developing fetus. How might fetal development be affected?

Applying Health Skills

Accessing Information. Research the changes that occur in a female’s body during the nine months of pregnancy. Make an informative pamphlet that summarizes this information by trimester. Illustrate the pamphlet with pictures that show fetal development during each trimester.

PRESENTATION SOFTWARE. Create a slide show that describes changes during pregnancy and fetal development. For help in making a computer slide show, see health.glencoe.com.
Lesson 2

Prenatal Care

VOCABULARY
prenatal care
birthing center
fetal alcohol syndrome (FAS)
miscarriage
stillbirth

YOU’LL LEARN TO
• Explain the importance of prenatal care and proper nutrition in promoting optimal health for both mother and baby.
• Analyze the harmful effects of tobacco, alcohol, and other drugs on the fetus.
• Identify and analyze the effects of environmental hazards on the fetus.
• Explain why seeking prenatal care early in pregnancy is important.

Although most pregnancies proceed with few or no complications, a female should begin prenatal care as soon as her pregnancy is confirmed. Prenatal (pree-NAY-tuhl) care refers to steps that a pregnant female can take to provide for her own health and the health of her baby.

Importance of Prenatal Care

One of the first decisions a pregnant female must make is who will provide her prenatal care. An obstetrician (ahb-stuh-TRI-shuhn) is a doctor who specializes in the care of a female and her developing child. A certified nurse-midwife is an advanced practice nurse who specializes in prenatal care and the delivery of babies. The mother-to-be must also decide where the birth will take place. In the United States, most births take place at a hospital, but some women may choose to have the delivery at home or in a birthing center, a facility in which women with low-risk pregnancies can deliver their babies in a homelike setting. Regardless of where the birth takes place, a doctor or certified nurse-midwife should be present.
During prenatal visits the female will have a complete physical that includes blood tests and a pelvic exam. The purpose of the exam is to identify problems so that they can be corrected or treated as early as possible. The obstetrician or nurse-midwife will monitor the mother’s weight and blood pressure. Often the developing baby will be viewed with an ultrasound machine. These visits also give the parents-to-be the opportunity to ask questions and to learn about important behaviors that can help ensure the health of the baby.

Proper Nutrition During Pregnancy

An unborn baby depends on its mother for nourishment. For this reason, a pregnant female needs more nutrients than at any other time in her life. To ensure the health of the developing fetus, increased amounts of many nutrients, including those below, are needed.

- **Calcium** helps build strong bones and teeth and healthy nerves and muscles. It is also important in developing heart rhythm.

- **Protein** helps form muscle and most other tissue.

- **Iron** makes red blood cells and supplies oxygen to cells.

- **Vitamin A** aids in cell and bone growth and eye development.

- **Vitamin B complex** aids in forming the nervous system.

- **Folic acid** is a critical part of spinal fluid and helps close the tube that contains the central nervous system. This neural tube forms 17 to 30 days after conception, so neural tube defects can occur before a female knows that she is pregnant. Health care providers suggest that all females of childbearing age consume 400–600 micrograms of folic acid daily to prevent these defects.

Although a pregnant female’s nutritional requirements may increase, she must be careful not to gain too much weight. Most pregnant females need only 300 additional calories each day—about the number of calories found in two and a half cups of low-fat milk. Most health care professionals suggest that females who are at a healthy pre-pregnancy weight gain between 25 and 35 pounds during pregnancy. Excess weight can be a health risk for both mother and baby.
Children with FAS suffer lifelong consequences, including
• mental retardation.
• learning disabilities.
• serious behavior problems.
• slowed growth.
• physical deformities including a small skull, abnormal facial features, and heart defects.

Weight reduction diets during pregnancy can harm the developing fetus. Such diets should be undertaken only under the guidance of an experienced health care provider.

Caffeine, present in coffee, tea, chocolate, and many cola drinks, can affect the developing fetus. A high intake of caffeine during pregnancy has been linked to an increased risk of birth defects and low birth weight.

Physical activity can be beneficial to the pregnant female and developing child. Before starting any exercise program, the expectant mother should discuss the matter with her health care provider.

The Health of the Fetus

A pregnant female must be very careful about the substances she takes into her body. Tobacco, alcohol, and other drugs can enter the body of the developing fetus and have serious effects.

Alcohol and Pregnancy

Any alcohol consumed during pregnancy quickly passes through the umbilical cord to the fetus. The fetus breaks down alcohol much more slowly than an adult does, so the alcohol level in the fetus’s blood can be higher than that of the mother and remain higher for a longer period of time. An elevated alcohol level can result in permanent damage to the fetus and a condition known as fetal alcohol syndrome (FAS), a group of alcohol-related birth defects that includes both physical and mental problems. The serious, lifelong consequences of FAS are listed at the left.

The tragedy of FAS is that it is entirely preventable. Because even small amounts of alcohol can be harmful, especially early in pregnancy, the safe decision for pregnant females and females considering pregnancy is not to drink any alcoholic beverages.

Tobacco and Pregnancy

Smoking during pregnancy is estimated to account for up to 30 percent of low birth weight babies, 14 percent of premature births, and 10 percent of all infant deaths. Studies suggest that a pregnant female’s smoking may also affect the growth, mental development, and behavior of her child until he or she is 11 years old. The only sure way to protect the developing fetus and child from the negative effects of tobacco is not to smoke.

The responsibility to provide a smoke-free environment extends beyond the expectant mother. According to the American Lung Association, pregnant females exposed repeatedly to secondhand smoke also have an increased risk of having a low birth weight baby. Low birth weight is a leading cause of death for children under 12 months old.
Medicines, Other Drugs, and Pregnancy

Using *drugs* when pregnant can have serious consequences. During pregnancy even prescription and over-the-counter *medicines* should be taken only with the approval of a doctor or other qualified health care provider.

Using illegal drugs when pregnant poses a serious health threat to both the mother and the fetus. Drug abuse can harm the mother's health and make her less able to support the pregnancy. Drugs also can directly harm fetal development. The use of certain illegal drugs during pregnancy can cause serious birth defects, premature labor, or miscarriage. In addition, a baby can be born addicted to the drugs the mother uses during pregnancy. The infant will suffer withdrawal when it no longer receives the drugs after birth. The baby may be hypersensitive and irritable and may cry for hours. It may tremble and jerk. A baby born addicted to drugs may fail to bond with its parents as normal babies do.

Hands-On Health

Tips for a Healthy Pregnancy

In this activity you will write and design a brochure with tips to help ensure a healthy pregnancy. Keep in mind that prenatal care isn’t just the responsibility of the mother-to-be. Expectant fathers, for example, can buy and prepare healthful food and accompany their wives to medical visits and childbirth classes.

What You’ll Need

- construction paper
- colored markers or pens
- magazines or newspapers

What You’ll Do

1. Fold the construction paper to make a three-panel pamphlet.
2. Using the information in this chapter, write at least five tips for a healthy pregnancy. Under each tip, include actions both parents should take to ensure that their baby is healthy.
3. Illustrate your pamphlet with photos from magazines or newspapers, or draw your own illustrations. Make your pamphlet persuasive, and target it to expectant parents.
4. Share your pamphlet with the class.

Apply and Conclude

As a class, combine the best features of all the pamphlets to create one pamphlet. Make copies, and give them to family members who are expecting a child or planning a family.
Environmental Hazards

Harm to the fetus can result when a pregnant female is exposed to some common substances in the environment. Being familiar with these substances can help a female avoid exposing her unborn child to their harmful effects.

► **Lead.** Lead exposure has been linked to miscarriage, low birth weight, mental disabilities, and behavior problems in children. Lead can be found in the paint of houses built before 1978 and can leach from old pipes into tap water.

► **Smog.** Recent studies have linked air pollution with birth defects, low birth weight, premature birth, stillbirth, and infant death. The greatest risk occurs during the second month of pregnancy when most organs and facial features develop.

► **Radiation.** Ionizing radiation—the type found in X rays—can affect fetal growth and cause mental retardation. Other types of radiation, such as that from video displays, color television sets, and microwave ovens, have not been shown to be harmful.

► **Cat Litter.** Cat feces may contain a parasite that can cause a disease called toxoplasmosis (tahk-suh-plaz-MOH-suhs). This disease can result in miscarriage, premature labor, and health problems in a newborn. Pregnant females should wash their hands after petting a cat, have others clean the cat litter box, and wear gloves when gardening where cats may be present.

In addition, when using household chemicals, pregnant females should read the cautions on cleaning products, wear gloves, and work in well-ventilated areas.

Complications During Pregnancy

Most pregnancies proceed with few problems. However, complications can arise, some of them serious. One complication is **miscarriage**, the spontaneous expulsion of a fetus that occurs before the twentieth week of a pregnancy. A dead fetus expelled from the body after the twentieth week is called a **stillbirth**. Women who use tobacco or drugs during pregnancy are more likely to experience a miscarriage or stillbirth than those who abstain from these substances. A miscarriage or stillbirth doesn’t necessarily mean that the mother did something wrong. Receiving the proper prenatal care during pregnancy can reduce the risk or severity of any problems that do arise.
Ectopic Pregnancy

Ectopic (ek-TAH-pik) pregnancies result when the zygote implants in the fallopian tube, the abdomen, the ovary, or the cervix. Ectopic pregnancy can occur when the fertilized egg can’t pass to the uterus, sometimes because of inflammation or scar tissue that has developed as a result of sexually transmitted diseases. The fetus can’t get the nourishment it needs to grow normally. The situation is a threat to the pregnant female’s life. Ectopic pregnancy is the number one cause of death of females in the first trimester of pregnancy. The treatment of ectopic pregnancy is removal of the fetus from the female’s body.

Preeclampsia

Preeclampsia (pree-ee-CLAMP-see-ah), also called toxemia, can prevent the placenta from getting enough blood. The condition may result in low fetal birth weight and problems for the mother. Symptoms of preeclampsia in a pregnant female include high blood pressure, swelling, and large amounts of protein in the urine. Treatment includes reducing blood pressure through bed rest or medicines. In some cases, hospitalization is necessary.

Reviewing Facts and Vocabulary

1. Explain the importance of prenatal care and describe what it involves.
2. Define the term stillbirth.
3. Analyze the effects of certain substances on the fetus. Why should pregnant females avoid drugs, alcohol, and tobacco?

Thinking Critically

4. Evaluation. Suppose someone told you that pregnancy is a natural process so prenatal care is not important. What information would you give such a person?
5. Synthesizing. Analyze the harmful effects of environmental hazards on the fetus. Over which factors that affect a developing fetus does a pregnant female have control?

Applying Health Skills

Stress Management. Pregnancy causes extra stress on the body of the mother. Along with these physical stresses come concerns about the health of the baby and about parenthood. Make a list of healthy “stress-busters” pregnant females could use. Share your list with families who are expecting a child.

INTERNET RESOURCES

Use the Internet to find information on stress management techniques. See health.glencoe.com for links to help your research.
No two individuals are exactly alike. Even identical twins have some differences. What accounts for this variety of traits? A number of factors influence the way an individual develops. One significant factor is heredity.

Heredity

The passing of traits from parents to their children is called heredity. Examples of traits that you inherited from your parents are your eye and hair color and the shape of your earlobes. Environment can also influence inherited traits. For example, height is an inherited trait, but poor nutrition may stunt a child’s growth.
Chromosomes and Genes

Most cells of your body contain a nucleus—the cell’s control center. Inside each nucleus is a set of **chromosomes** (KROH-muh-sohmz), threadlike structures found within the nucleus of a cell that carry the codes for inherited traits. Most cells in the body contain 46 chromosomes arranged as 23 pairs.

Sections of chromosomes, called genes, carry codes for specific traits. **Genes** are the basic units of heredity. Like chromosomes, genes occur in pairs. One gene from each pair is inherited from each parent. You have thousands of genes in every cell of your body.

DNA

The chemical unit that makes up chromosomes is called **DNA**, or deoxyribonucleic (dee-AHK-si-REYE-boh-nyoo-KLE-ik) acid. All living things are made of DNA. Chemical compounds, called bases, make up the structure of DNA. The arrangement of the bases along each DNA molecule differs. Because several thousand pairs of bases are in each gene, countless numbers of arrangements are possible. The order of the bases is called the genetic code. Cells use the genetic code to make proteins. Proteins help to build and maintain body tissues. Different kinds of proteins will result in various individual traits. All the characteristics that you have—the color of your eyes and the amount of curl in your hair—are determined by your genetic code. Unless you have an identical twin, your DNA is different from that of any other person.

Genetics and Fetal Development

Every living organism has a certain number of chromosomes. Although most human cells contain 46 chromosomes—23 pairs—sperm and egg cells have only half that amount, or 23 chromosomes. When a sperm and an egg unite, the resulting zygote will have 46 chromosomes—23 from each parent. These chromosomes carry the hereditary traits of the parents.

As you learned in Lesson 1, a zygote divides many times, producing the trillions of cells that make up the human body. Between each cell division, each chromosome in the cell nucleus duplicates itself, producing two sets of 46 chromosomes. As the cell divides, the two sets of chromosomes separate. Each new cell will contain one set of 46 chromosomes that are identical to those in the first cell of the zygote.

A DNA resembles a long twisted helix, with ladder-like chains. Nitrogen bases make up the rungs of the ladder. **Give an example of a trait that is determined by genes.**
Dominant and Recessive Genes

At least one pair of genes is responsible for each human trait. Some genes are dominant, and others are recessive. The traits of dominant genes generally appear in offspring whenever they are present. The traits of recessive genes usually appear only when dominant genes are not present. For example, suppose an individual receives two genes for eye color—one for brown eyes and one for blue eyes. The resulting individual will have brown eyes because the gene for brown eyes is dominant and the gene for blue eyes is recessive. An individual with blue eyes must have two recessive genes for blue eye color.

The situation is more complex than in the example above because traits that express a quantity or an extent—such as height, weight, or color—usually depend on many gene pairs, not just one.

Genes and Gender

In humans one pair of chromosomes determines the gender of an individual. If you are female, these two chromosomes look exactly alike and are called X chromosomes. If you are male, the two chromosomes differ—one is shorter than the other. The shorter chromosome is the Y chromosome. The longer one is the X chromosome.

Remember that sperm and egg cells contain only half the chromosomes of other cells, or one sex chromosome, not two. Sperm contain an X or a Y chromosome. Eggs have only an X chromosome. The gender of a child is determined by which type of sperm—X or Y—unites with an egg.

Genetic Disorders

Sometimes the genes that an individual inherits contain a mutation, or abnormality, in the base sequence of the genetic code. Often the mutation has little or no effect on the individual, but sometimes the mutation can result in defects or other health problems. Genetic disorders are disorders caused partly or completely by a defect in genes. Some genetic disorders, such as those that cause birth defects, are apparent right away. One example of such a defect is a cleft palate. However, other genetic disorders do not show up until later in life. Figure 19.4 gives information about some common genetic disorders.
Although most genetic disorders cannot be cured, in some cases they can be treated, especially if they are diagnosed early—often before birth. Two common procedures used to test for genetic disorders are amniocentesis (am-nee-oh-sen-TEE-sis) and chorionic villi (kor-ee-ON-ik VIL-eye) sampling.

- **Amniocentesis** is a procedure in which a syringe is inserted through a pregnant female’s abdominal wall into the amniotic fluid surrounding the developing fetus. Doctors can examine the chromosomes in fetal cells taken from amniotic fluid for genetic abnormalities or to determine the gender and age of the fetus. Amniocentesis is usually performed 16 to 20 weeks after fertilization.

- **Chorionic villi sampling**, or CVS, is a procedure in which a small piece of membrane is removed from the chorion, a layer of tissue that develops into the placenta. The tissue can be examined for genetic disorders or to determine fetal age and gender. The procedure is done around the eighth week of fetal development.

Tests for genetic disorders may also be done after a child is born. For example, many states require the testing of all newborns for phenylketonuria (PKU). If PKU is diagnosed soon after birth, a baby’s diet can be altered to stop possible mental retardation caused by this genetic disorder.
Should People Undergo Genetic Testing?

In the past few years, researchers have linked specific genes or gene mutations with particular diseases. People can be tested to find out whether they are genetically predisposed to those diseases. Some people feel that the disadvantages of genetic testing outweigh the advantages. Others think the opposite is true. Here are two points of view.

Viewpoint 1: Neil S., age 15

I don't think that people should undergo genetic testing. What if they have the gene for a disease for which there's no cure? They would probably worry about it all the time and not be able to do anything about it. A positive test doesn't necessarily mean that the person will develop the disease, but it could cause the person to lose his or her health insurance.

Viewpoint 2: Jan P., age 16

I think genetic testing should be available for those who want it. A person who carries the gene for a particular disease may be able to take additional precautions such as more frequent screenings to reduce the risk of developing the disease. Also, I think that having genetic testing is a personal choice. People can choose not to have it if they don't want to know.

1. Research some diseases or conditions for which people can undergo genetic testing.
2. After researching, list some legal and ethical questions to consider before having a genetic test. How do you think these issues might influence someone's decision about whether to be tested?

Genetic Counseling

Research for diagnosing, preventing, and treating genetically related diseases has resulted in a wide variety of programs. Genetic counselors can advise families about the probability of having a child with a genetically related disease. They also can guide families of children with genetic disorders about possible treatment options.

Genetic Research to Cure Disease

Scientists have taken an important step in understanding and treating genetic disorders. The Human Genome Project is an international effort that has successfully identified the approximately 30,000 genes on the 46 human chromosomes. Gene maps can be used to diagnose genetic disorders.
Gene Therapy

Many disorders result when an individual lacks a functioning gene. Without the functioning gene, certain substances that the body needs are not produced. Gene therapy is the process of inserting normal genes into human cells to correct genetic disorders. When the defective gene is replaced with a normal one, the cells with the new gene begin to make the missing substance. Most often, viruses are the carriers used to insert the new gene into a person’s cells. The practice of placing fragments of DNA from one organism into another is called genetic engineering, and it is considered highly experimental. Genetic diseases for which scientists are researching gene therapies include cystic fibrosis and various types of cancer.

Genetically Engineered Drugs

Genes used to treat disease aren’t usually inserted directly into human beings. Instead they are placed into other organisms, causing them to produce substances that can be used to treat human diseases and disorders. Genetically produced medicines include treatments for burns and ulcers, growth defects, and for ovarian and breast cancers. Factor VIII medicines treat hemophilia. Genetic engineering also is used to produce some vaccines that prevent diseases.

Reviewing Facts and Vocabulary

1. What is heredity?
2. Name three human genetic disorders.
3. Explain the difference between amniocentesis and chorionic villi sampling (CVS).

Thinking Critically

4. Analyzing. Explain how chromosomes, genes, and DNA are significant in determining human traits.
5. Synthesizing. Explain how genetic research technology has impacted the health status of families. How might a genetic counselor help a family that has just learned that their child may have inherited a genetic disorder?
Dramatic physical and mental changes take place as an infant grows through childhood. Many scientists have studied these changes, and they have developed different theories about them. One of the most widely accepted theories of development is that of psychologist Erik Erikson.

Childhood Development

According to Erikson, each individual passes through eight developmental stages during his or her life. Each stage is characterized by developmental tasks, events that need to happen in order for a person to continue growing toward becoming a healthy, mature adult. Success in each stage is dependent on an individual’s experiences during that stage. Partial development at one stage can be overcome by developmental successes in following stages. The four stages that apply to infancy and childhood are summarized in Figure 19.5.

Infancy

Infancy is the period of fastest growth in a person’s life. During this time a child’s weight may triple, and his or her height may
STAGES OF INFANCY AND CHILDHOOD

Each stage of development is associated with a developmental task that involves a person’s relationship with other people.

Stage 1
Infancy: Birth to 1 year
Task: To develop trust
Description: Infant is completely dependent on others to meet his or her needs. Must be able to trust others to provide for needs.

Stage 2
Early Childhood: 1 to 3 years
Task: To develop ability to do tasks for oneself
Description: Child learns to walk, talk, and dress and feed himself or herself. Self-control and confidence begins to develop, and child begins a desire for independence.

Stage 3
Middle Childhood: 4 to 6 years
Task: To develop responsibility, take initiative, to create one’s own play
Description: Child becomes more engaged in interactions with others. Models adult behavior by helping with household chores. Learns to control impulses.

Stage 4
Late Childhood: 7 to 12 years
Task: To develop an interest in performing activities
Description: Child completes transition from home to school; learns to make things, use tools, and acquire skills.

Increase by 50 percent. Infancy is a time of learning—how to eat solid food and how to sit, crawl, and walk. An important task for an infant is developing trust. Infants of parents who are attentive—who play with and talk to the infant and give comfort—learn to view the world as a safe place. These children see people as being dependable. If parents ignore a child’s needs, the child may learn to be distrustful.

Early Childhood

Children in early childhood begin to feel proud of their accomplishments, and they become eager to learn more. During this time children develop many new skills. They learn to talk, climb, push, and pull. They increase their vocabulary and begin talking in sentences. If parents accept the child’s need to do whatever he or she is capable of, the child will develop a sense of autonomy, the confidence that a person can control his or her own body, impulses, and environment. If parents are overprotective or critical of the child’s behaviors, the child may develop doubts about his or her abilities.
Decision Making: Choosing Toys

Colleen is buying a gift for her sister’s second birthday. She and her friend, Amanda, are in the toy store. “What about this puzzle?” asks Amanda. “That’s cute,” Colleen replies, “but it looks complicated. What if she chokes on the small pieces?”

“Maybe a ride-on toy?” Amanda suggests. “My little brother loves his tricycle.”

“Those are fun,” Colleen agrees. “But you have to make sure they’re stable, so the child doesn’t tip over. There are a lot of safety issues to consider when you get a toy for a child.”

Amanda sighs. “Maybe we need to do some research to find out what two-year-olds can play with.”

“The party is tomorrow,” Colleen replies. “I don’t have a lot of time for research.”

Middle Childhood

During middle childhood children learn to initiate play activities rather than merely following the lead of others. Children of this age display their intelligence by asking many questions. They must learn to recognize emotions and practice expressing them in appropriate ways. If parents show approval of these new abilities and encourage questions, children learn creativity, initiative, and the ability to start something on their own. Children of parents who are impatient with the child may develop a sense of guilt about self-initiated activities, resulting in low self-esteem.

Late Childhood

During late childhood school becomes an important part of a child’s life. Children develop skills in reading, writing, and math.

Caring

When a child feels understood and has physical and emotional needs taken care of, he or she will thrive. Take the time to listen attentively and show that you care whenever you have a chance to help a toddler or young child. Think of ways you demonstrate caring with younger siblings or other children.
Children learn to get along with peers, learn appropriate roles in society, and develop a conscience. If their efforts are rewarded and appreciated, their pride in their work increases. Children who are scolded for making a mess, getting in the way, or not following directions may develop feelings of self-doubt.

Health Screenings in Childhood

Vision and hearing impairments can affect a child’s development as much as social factors do. Immunizations and health screenings can prevent many problems.

Vision and Hearing

According to the CDC, nearly one in every 1,000 children in the United States has low vision or is legally blind. The American Academy of Ophthalmology recommends that vision screenings be given to newborns and regularly throughout childhood. Schools often provide regular vision screenings for students.

In the United States, two to three of every 1,000 infants are born with a hearing impairment severe enough to affect a child’s language development. Some states require that newborns be screened at birth for hearing loss. Schools often provide periodic screenings.

Scoliosis

Scoliosis, an abnormal lateral, or side-to-side, curvature of the spine, may begin in childhood and go unnoticed until the teen years. Its exact cause is unknown, though it is more common in girls. Many public schools check for scoliosis in middle school.
Some experts suggest that children should read or be read to for at least 20 to 30 minutes each day. For school age children, reading skills are essential for achieving a sense of competence about their own abilities. For preschoolers, being read to fosters the desire to read and teaches them cooperation and listening skills. In the activity below, you will research and select print media sources for children that illustrate or reinforce the developmental tasks discussed in Lesson 4 of this chapter.

ACTIVITY

You have been asked by your local library to develop a summer reading program for children. Pick one of two age groups for your project, children ages 3 to 5 or children ages 6 to 11. For children ages 3 to 5, research and select five stories to be read aloud to the children. For children ages 6 to 11, identify five books or stories for the children to read themselves.

Using your school or local library as a resource, research and select the five stories you will recommend for your summer reading or storytelling program. For each selection you make, write a brief synopsis of the story that explains how the selection illustrates or reinforces the developmental tasks for that age group.

EXPRESS YOUR VIEWS

Research summer reading and literacy programs in your area. Write an editorial for your school newspaper that encourages teens to volunteer for these programs. Your editorial should state why reading is important, give information about local programs, and contain suggestions for how to get involved.
Pediatrician

Being a physician who specializes in treating children from birth through the teen years takes patience, understanding, and a lot of education. Pediatricians get a four-year college degree and then complete four years of medical school. This is followed by three or more years of residency training in pediatrics. Some pediatricians have additional training in specialties such as neonatal care or heart diseases in children. Find out more about this and other health careers by clicking on Career Corner at health.glencoe.com.

Language Arts Connection

Create a Futuristic Story. As a result of scientific breakthroughs in genetic research, scientists predict they can make even greater strides in treating and curing illnesses. From what you have learned about genetics, write a science fiction story of how the human genome-mapping project might further impact the future. Remember that although science fiction contains the possibilities of the imagination, the plot must reflect in some way the laws of science.

Social Studies Connection

Examine Theories of Development. Understanding the physical and mental stages of human development helps parents guide their children toward adulthood. Select and study the work of a psychologist or scientist, such as Sigmund Freud, who has theorized about early childhood development. Using a Venn diagram, compare and contrast this researcher’s stages to Erik Erikson’s theory outlined in Lesson 4 of this chapter.

Math Connection

Calculate Percentage of Births and Deaths. The number of live births in the U.S. in 1999 was 3,959,417, and the total number of deaths was 2,391,399. What was the number by which births exceeded deaths? What percentage of total births does this number represent?

Science Connection

List Discoveries in Health. A general map of the human genetic code was completed in June 2000 through the Human Genome Project. Enormous potential exists for the correction of birth defects and the production of highly specific medications. Investigate the progress made by the Human Genome Project. Make a list of current technologies that use the information and future uses proposed.
Chapter 19 Review

EXPLORING HEALTH TERMS

Answer the following questions on a sheet of paper.

Lesson 1
Replace the underlined words with the correct term.

- amniotic sac
- implantation
- embryo
- labor
- fertilization
- placenta
- fetus
- umbilical cord

1. The final stage of pregnancy, in which the uterus contracts and pushes the baby out of the mother's body, is fertilization.
2. The ropelike structure that connects the embryo and the placenta is the fetus.
3. The amniotic sac is the thick, blood-rich tissue that lines the walls of the uterus and nourishes the embryo during pregnancy.

Lesson 2
Match each definition with the correct term.

- birthing center
- prenatal care
- stillbirth
- fetal alcohol syndrome (FAS)
- miscarriage

4. A facility in which females with low-risk pregnancies can deliver their babies in a homelike setting.
5. A group of alcohol-related birth defects.
6. The spontaneous expulsion of a fetus that occurs before the twentieth week of a pregnancy.

Lesson 3
Fill in the blanks with the correct term.

- CVS
- DNA
- genes
- gene therapy
- genetic disorder
- chromosomes
- heredity
- amniocentesis

7. The threadlike structures found within the nucleus of a cell that carry the codes for inherited traits are called _________.
8. The basic units of heredity are _________.
9. The chemical units that make up chromosomes are called _________.
10. A defect in genes can result in a(n) _________.

Lesson 4
Fill in the blanks with the correct term.

- autonomy
- scoliosis
- developmental tasks

11. ________ is/are a series of events that must happen in order for an individual to continue growing toward becoming a healthy, mature adult.
12. ________ is/are the confidence that a person can control his or her own body, impulses, and environment.
13. An abnormal sideways curvature of the spine is _________.

RECALLING THE FACTS

Use complete sentences to answer the following questions.

Lesson 1
1. From where does a zygote's DNA originate?
2. What is the function of the amniotic sac?
3. Summarize the three stages of labor.

Lesson 2
4. What happens during a prenatal visit to a doctor or certified nurse midwife?
5. Why is nutritional counseling during pregnancy important?
6. List four environmental hazards that can harm a fetus.

Lesson 3
7. Explain the role of genetics in human development. If a baby boy receives a dominant gene for brown eyes and a recessive gene for blue eyes, what color will his eyes be?
8. How does the genetic makeup of a male differ from that of a female?
Lesson 4

9. How might impatience toward someone in middle childhood affect the development of that child?
10. How soon after birth should an infant have a hearing screening?
11. When is a child commonly checked for scoliosis?

THINKING CRITICALLY

1. Summarizing. Make a booklet to explain the process of fetal development to young children. Share your booklet with a young child you know. (LESSON 1)
2. Synthesizing. Suppose you observed a pregnant female drinking an alcoholic beverage. How might you inform her about the effects of her drinking on her unborn child? (LESSON 2)
3. Applying. Identify and survey occurrences of an easily observed genetic trait such as hair color. From your data, decide whether the trait you observed is dominant or recessive. Research the trait to confirm or disprove your decision. (LESSON 3)
4. Evaluating. You observe a parent interacting with a child in the grocery store. The child is pushing a mini-cart and mimicking the motions of “shopping.” Periodically the child asks, “Why?” and wants to examine everything in the store. Which stage of childhood is the child displaying? What clues help you make this determination? (LESSON 4)

HEALTH SKILLS APPLICATION

1. Accessing Information. Choose a human body system. Research its development before birth. Prepare a visual report of your findings. (LESSON 1)
2. Communicating. Research and analyze the effects of secondhand smoke on a developing fetus. Write a dialogue in which a pregnant woman uses this factual information and “I” messages to communicate her desire for a person not to smoke in her presence. (LESSON 2)
3. Advocacy. Research a genetic disorder that interests you. Find out what organizations are currently doing research on the disease and how this research is funded. Write a letter to the funding organization urging them to continue their support. (LESSON 3)
4. Practicing Healthful Behaviors. Identify screening and immunization programs in your community. What screenings and immunizations are required by your state? By your school district? Check with your parents about whether your own family’s immunizations are up to date. (LESSON 4)

Parent Involvement

Analyzing Influences. Talk with a parent or other adult family member about the responsibilities of parenthood. Share Erikson’s stages of infancy and early, middle, and late childhood, and discuss how your family helped you move successfully from one stage to another.

School and Community

Child Care. Invite a child psychologist to your school to discuss the developmental tasks of children. Have the person explain the positive behaviors that caregivers can use to help ensure that the children they care for become healthy, mature adults. Then use the information to prepare a pamphlet for all babysitters to read.